A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum

نویسندگان

  • Min Zhao
  • Aiping Song
  • Peiling Li
  • Sumei Chen
  • Jiafu Jiang
  • Fadi Chen
چکیده

Iron (Fe) deficiency can represent a serious constraint on crop growth and productivity. A number of members of the bHLH transcription factor family are known to be involved in the plant Fe deficiency response. Plants have evolved two distinct uptake strategies when challenged by Fe deficiency: dicotyledonous and non-graminaceous species rely mostly on a reduction strategy regulated by bHLH transcription factors, whereas rice relies on a chelation strategy, also regulated by bHLH transcription factors. CmbHLH1, a bHLH transcription factor which is localized within the nucleus, was isolated from chrysanthemum. Its transcription was up-regulated both by Fe deficiency and by the exogenous application of abscisic acid. The roots of transgenic chrysanthemum plants in which CmbHLH1 was up-regulated were better able than those of the wild type chrysanthemum cultivar to acidify their immediate external environment by enhancing the transcription of the H(+)-ATPase encoding gene CmHA. However, there was no effect of the transgene on the efficiency of uptake of either manganese or zinc. Here, Chrysanthemum CmbHLH1 contributed to Fe uptake via H(+)-ATPase mediated acidification of the rhizosphere. ABA may be positively involved in the process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple

Fe deficiency is a widespread nutritional disorder in plants. The basic helix-loop-helix (bHLH) transcription factors (TFs), especially Ib subgroup bHLH TFs which are involved in iron uptake, have been identified. In this study, an IVc subgroup bHLH TF MdbHLH104 was identified and characterized as a key component in the response to Fe deficiency in apple. The overexpression of the MdbHLH104 gen...

متن کامل

Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants.

To clarify the molecular mechanism that regulates iron (Fe) acquisition in graminaceous plants, a time-course analysis of gene expression during Fe deficiency stress was conducted using a rice 22K oligo-DNA microarray. Twenty-one genes for proteins that function in gene regulation were induced by Fe deficiency. Of these genes, a putative basic helix-loop-helix (bHLH) transcription factor gene, ...

متن کامل

bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana

Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficiency. In this study, we show that the bHLH transcription factor bHLH115 is a positive regulator of t...

متن کامل

The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis.

Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of...

متن کامل

The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots.

Global population increases and climate change underscore the need for better comprehension of how plants acquire and process nutrients such as iron. Using cell type-specific transcriptional profiling, we identified a pericycle-specific iron deficiency response and a bHLH transcription factor, POPEYE (PYE), that may play an important role in this response. Functional analysis of PYE suggests th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014